UC Berkeley News
Berkeleyan

Berkeleyan

 Alex Zettl (left) and graduate student Kenneth Jensen have created the first fully functional radio from a single carbon nanotube, making it by several orders of magnitude the world's smallest radio. (Photo by Roy Kaltschmidt, Berkeley Lab, Creative Services Office)

Nanoradio gives researchers excitations
World's smallest radio is 'ridiculously simple.' (Batteries not included)

| 08 November 2007

Berkeley physicists have built the smallest radio yet: a single carbon nanotube, one ten-thousandth the diameter of a human hair.

The scientists successfully received their first FM broadcast last year - Derek and the Dominos' "Layla" and the Beach Boys' "Good Vibrations," two rock classics, transmitted from across the room. In homage to last year's 100th anniversary of the first voice and music radio transmission, they also transmitted and successfully tuned in to the first piece of music ever broadcast, back in 1906: the "Largo" from Handel's opera Xerxes.

"We were just in ecstasy when this worked," says team leader Alex Zettl, a Berkeley professor of physics. "It was fantastic."

The nanoradio, which is currently configured as a receiver but could also work as a transmitter, is 100 billion times smaller than the first commercial radios, and could be used in any number of applications - from cell phones to microscopic devices that sense the environment and relay information via radio signals, Zettl says. Because it is extremely energy-efficient, it would integrate well with microelectronic circuits.

"The nanotube radio may lead to radical new applications, such as radio-controlled devices small enough to exist in a human's bloodstream," the authors wrote in a paper published in the Nov. 6 issue of the journal Nano Letters.


These blasts from the past were the first two tunes picked up by the newly created nanoradio.
 

Authors of the nano-radio paper are Zettl, graduate student Kenneth Jensen, and their colleagues in Berkeley's Center of Integrated Nanomechanical Systems (COINS) and in the Materials Sciences Division at Lawrence Berkeley National Laboratory (LBNL). COINS is a Nanoscale Science and Engineering Research Center supported by the National Science Foundation (NSF).

Nanotubes are rolled-up sheets of interlocked carbon atoms that form a tube so strong that some scientists have suggested using a nanotube wire to tether satellites in a fixed position above Earth. The nanotubes also exhibit unusual electronic properties because of their size, which, for the nanotubes used in the radio receiver, are about 10 nanometers in diameter and several hundred nanometers long. (A nanometer is one-billionth of a meter; a human hair is about 50,000 to 100,000 nanometers in diameter.)

In the nanoradio, a single carbon nanotube works as an all-in-one antenna, tuner, amplifier, and demodulator for both AM and FM. These are separate components in a standard radio. A demodulator removes the AM or FM carrier frequency, which is in the kiloHertz and megaHertz range, respectively, to retrieve the lower-frequency broadcast information.

Radical reception

The nanoradio detects radio signals in a radically new way: It vibrates thousands to millions of times per second in tune with the radio wave. This makes it a true nanoelectromechanical device, dubbed NEMS, that integrates the mechanical and electrical properties of nanoscale materials.

In a normal radio, ambient radio waves from different transmitting stations generate small currents at different frequencies in the antenna, while a tuner selects one of these frequencies to amplify. In the nanoradio, the nanotube, as the antenna, detects radio waves mechanically by vibrating at radio frequencies. The nanotube is placed in a vacuum and hooked to a battery, which covers its tip with negatively charged electrons, and the electric field of the radio wave pushes and pulls the tip thousands to millions of times per second.

While large objects, like a stiff wire or a wooden ruler pinned at one end, vibrate at low frequencies - between tens and hundreds of times per second - the tiny nanotubes vibrate at high frequencies ranging from kiloHertz (thousands of times per second) to hundreds of megaHertz (100 million times per second). Thus, a single nanotube naturally selects only one frequency.

Although it might seem that the vibrating nanotube yields a "one station" radio, the tension on the nanotube also influences its natural vibration frequency, just as the tension on a guitar string fine-tunes its pitch. As a result, the physicists can tune in a desired frequency or station by "pulling" on the free tip of the nanotube with a positively charged electrode. This electrode also turns the nanotube into an amplifier. The voltage is high enough to pull electrons off the tip of the nanotube and, because the nanotube is simultaneously vibrating, the electron current from the tip is an amplified version of the incoming radio signal. This is similar to the field-emission amplification of old vacuum-tube amplifiers used in early radios and televisions, Zettl says. The amplified output of this simple nanotube device is enough to drive a very sensitive earphone.

Finally, the field-emission and vibration together also demodulate the signal.
"I hate to sound like I'm selling a Ginsu knife - 'But wait, there's more! It also slices and dices!' - but this one nanotube does everything; it performs all radio functions simultaneously and extremely efficiently," Zettl says. "It's ridiculously simple - that's the beauty of it."

Zettl's team assembles the nanoradios very simply, too. From nanotubes copiously produced in a carbon arc, they glue several to a fixed electrode. In a vacuum, they bring the electrode within a few microns of a second electrode, close enough for electrons to jump to it from the closest nanotube and create an electrical circuit. To achieve the desired length of the active nanotube, the team first runs a large current through the nanotube to the second electrode, which makes carbon atoms jump off the tip of the nanotube, trimming it down to size for operation within a particular frequency band. Connect a battery and earphones, and voila!

Reception by the initial radios is scratchy, which Zettl attributes in part to insufficient vacuum. In future nanoradios, a better vacuum can be obtained by ensuring a cleaner environment, or perhaps by encasing the single nanotube inside a second, larger non-conducting nanotube, thereby retaining the nanoscale.

Zettl won't only be tuning in to oldies stations with his nanoradio. Because the radio static is actually the sound of atoms jumping on and off the tip of the nanotube, he hopes to use the nanoradio to sense the identity of atoms or even measure their masses, which is done today by cumbersome large mass spectrometers.

For more information, including audio clips of the nanoradio, visit socrates.berkeley.edu/~argon/nanoradio/radio.html.